Yolact
Made a quick and dirty fork of YOLACT with minor changes.
- Added
--inverse_mask
’ option. This adds an extra output file with just the mask data. - Compiled/run on WSL2
The choice of YOLCAT was based on this article: https://medium.com/@anno-ai/evaluating-segmentation-methods-for-single-objects-e773f025b5e0
Below is an example script to convert a folder of images. This script generates two files for each input,
- a
.jpg
file with just the recognized image only with remaining image blacked out, and - a
.jpg_mask
file that only include a white mask of the identified object and remaining image blacked out.
in_dir=...
in_files=$(ls -1 ${in_dir}/*.jpg | cut -f2 -d/)
if [ ! -d ${in_dir}_out ] ; then
mkdir ${in_dir}_out
fi
for f in ${in_files} ; do
echo $f
python eval.py \
--trained_model=weights/yolact_base_54_800000.pth \
--score_threshold=0.15 \
--top_k=1 \
--display_masks=no \
--display_bboxes=no \
--display_text=no \
--display_scores=no \
--inverse_masks=yes \
--image=$in_dir/$f:${in_dir}_out/$f
done
Subscribe via RSS